Update on W/Z->dijets

QCD Meeting
December 13, 2002
Olga Lobban

Note 4191

- Used JTC96 for jet corrections
- Used single jet trigger efficiency to find Efficiency vs dijet mass
- Used following kinematic cuts
 - $-0.1 < |\eta| < 0.9$
 - Third jet E_T < 12 GeV
 - $-\Delta\Phi_{ii} > 160^{\circ}$
 - Jet electromagnetic energy fraction < 0.95

This analysis

- Used jet corrections based on new energy scale of CHA
- Used background fit extrapolated to low dijet mass values to find Efficiency vs dijet mass
- Used following kinematic cuts
 - Third jet E_T < 10 GeV
 - $-\Delta\Phi_{jj} > 113^{\circ}$

Comparing 4191 and this analysis

	4191	This Analysis
Jet Corrections	JTC96	Corrections based on new CHA energy scale
Trigger Correction	Based on single jet efficiency	Based on fit to high dijet mass region
Kinematic Cuts	•0.1 < $ \eta $ < 0.9 •Third jet E_T < 12 GeV • $\Delta\Phi_{jj}$ > 160° •Jet em energy fraction < 0.95	•Third jet E_T < 10 GeV • $\Delta\Phi_{jj}$ > 113°

Results

- JTC96, our kinematic cuts, our trigger efficiency method
 - Results: 4391 ± 2334 (sys) ± 720 (stat)
 - Signal found in region 82-107 GeV/c²
- JTC96, 4191 kinematic cuts, our trigger efficiency method
 - Results: 610 ± 899 (sys) ± 406 (stat)
 - Looked in region 82-107 GeV/c²

Residuals

- JTC96
- our kinematic 500 cuts
- our trigger efficiency method

Dijet Invariant Mass (GeV/c²)

Acceptances

- $-0.1 < |\eta| < 0.9$
- Third jet E_T < 12 GeV
- $-\Delta\Phi_{jj} > 160^{\circ}$
- Jet 1,2 $E_T > 12 \text{ GeV}$

From Note 4191		→PYTHIA + QFL	PYTHIA generated values
	W	10 %	3%
	Z	13 %	3%

To Do

- Generate W's and Z's with PYTHIA and run them through QFL
 resolve discrepancy in acceptances
- Find the trigger efficiency using single jet trigger efficiency (as in Note 4191)
- Use Note 4191 kinematic cuts with our jet corrections, our trigger efficiency correction